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ABSTRACT
New bideterminantal formulas for the irreducible symplectic and orthogo-
nal characters are given that generalize the classical bideterminantal for-
mulas. These formulas are analogous to Regev’s (Israel J. Math. 80 (1992),
155-160) bideterminantal formulas for Schur functions, the irreducible gen-
eral linear characters. Also, new bideterminantal formulas for Proctor’s

intermediate symplectic characters are derived.

1. Introduction and statement of results

We prove formulas that express the irreducible symplectic and orthogonal char-
acters (cf. [1, 2, 3]) as ratios of certain determinants whose entries involve com-
plete homogeneous, respectively elementary symmetric functions (see (1.8)—(1.13)
below). These new identities generalize the classical bideterminantal expressions
for irreducible symplectic and orthogonal characters (cf. [1, § 24.2]). We were mo-
tivated by work of Regev [8] who proved analogous formulas for Schur functions,
the irreducible general linear characters.

Let us recall the classical character formulas. An n-tuple A = (Ag, A2,...,An)
of integers with Ay > A2 > .-+ > A, > 0 is called a partition. The components
of A are called the parts of A. The Schur function s)(z;,z9,...,,) is given by

(cf. [4, L(3.1); 1, p. 403, (A.4)])
Ai+n—1
15(33tgn(xj )

n—1i
15(11?511(% )

(1.1) sx(z1,x2, .., T0) =
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The irreducible (even) symplectic character sp, (zF!, 251, ..., 2£1) is given by

(cf. [1, (24.18)))

det (x/\i+n—i+1 _ mj—(x.-+n—i+1))

1 1 +1y _ 1ii<n
(12) SpA(l‘I sy LY gy Ty )_ det $7}_i+1—-’l'j_(n—i+1))

1<ij<n 7

0Odd symplectic characters have been defined by Proctor [5, 6, 7). These cor-
respond to indecomposable representations of odd symplectic groups. A bide-
terminantal formula for the odd symplectic character spA(xlil,x:ZH, ool
appeared in [5, Theorem 2.2]. These characters are indexed by partitions A =
(A1, A2, ..., Ang1) with n + 1 parts. Proctor’s formula may be written as

(1.3)
det (x/‘\i+n—i+3/2+mf(ki+n—i+3/2))
1<i,j<n41" J J
det r_L—i+3/2 '—(n—i+3/2)
15i,jesn+1(wf 7 )

41 41 £1 1) —
spy(zy a3 ,. ., xr 1) =

Tnt1=1

Now let A = (Ag,...,A,) again be a partition with n parts. For the even
orthogonal groups, the irreducible orthogonal character oy (:z:lil,x%l, cozE) s
given by (cf. [1, (24.40) + first paragraph on p. 411, 7, Appendix A2])

/N-+n—i + I.—(Ai +n-—1)

det (] 5 )

(1.4) 0}\(1,:!:1 +1 Iil) _ 1<7,5<n

1 5xy e, Ty — ——
det (2" 427"
1<i,j<n ! J

Finally, for the odd orthogonal groups, the irreducible orthogonal character

oa(xE, zE ... 2E1 1) is given by (cf. [1, (24.28)])
det (:C)‘w+n—i+1/2 _ I’f(Ai+n~i+1/2))
15 1 41 1 1y o 1Shign !
( . ) 0A<$1 s Ty ey Ty )— det x’?_i*‘l/z—xf(n—i-"l/”)
1<i,j<n 7 7

Let hy(zy,...,2,) denote the m-th complete homogeneous symmetric function
in the variables z,, zs, ..., ., and let e,,(x1, ..., z,) denote the m-th elementary
symmetric function in 1, T3, ..., ., (cf. [4, pp. 12-15]). Then Regev’s formulas

for Schur functions sy read as follows, [8, Theorem 1.(b)):
15(1’13%"(h/\i+n—i(xj’ RS xj+r))

S Ty

(1.6) s\(@1, .., Tngr) =
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and if n — 2 < r [8, Theorem 1’.(b), corrected]

det (ex,4n—i(Zji -5 Tjsr))
(17) S,\r(l‘n ;l‘r+1) = 1stj<n
T (Jet (eni(zj, o Zi4r))
<1,7<n

Here X denotes the partition conjugate to A (cf. [4, p. 2]). Clearly, setting r = 0
in (1.6) yields (1.1).
The analogous identities for sp, and o) which we are going to prove in the

next section, are the following. For the symplectic characters we have

det (h)\-+n-i($‘i17” a3 (1))
1<i,j<n " 7 ”T
(1.8) spy(zy!, .2y, (1) = ’
R (St (i oz (1))
and if n -2 <7,
+1 +1
L ) 1<C11%t<n( Aitn— I(Z Yt ]+’I‘( 1)))
(1.9) Sp,\f(f'?f RERERY Ti+1( 1) = f X1 +1 ’
1<§et (e‘n—i(mj i) ]+r( 1)))
where

em() = em() — em—2().

By hm(zE!, ... 2%1(,1)) we mean ho(z1,27%, ..., 2, 27 1(,1)), etc. The nota-
tion (,1) has to be understood in the sense that this group has to be omitted
in case of even symplectic characters, while in case of odd symplectic characters
it is meant that 1 is an additional argument in the symplectic character and
the complete homogenous and the elementary symmetric functions in (1.8) and
(1.9). Obviously, the identity (1.2) for the even symplectic character comes out
of the even case of (1.8) by setting » = 0 and multiplying the j-th column in
both determinants by z; — m;l, for  =1,2,...,n. The identity (1.3) cannot be
derived in full generality from (1.8). The reason is that in (1.3) the partition A
is allowed to have n + 1 parts which is not true for (1.8). However, if A,y =0
then (1.3) and the odd case of (1.8) with » = 0 are completely equivalent. This
will be shown at the end of section 2.
Similarly, for the orthogonal characters we shall prove
1 1 ( 1)) _ 1g(},ejt§n(h’\ +n— z(xflv"'va";‘t{}r(vl)))

(1.10) ox(z7 i ;
et (L (D))
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where AL, () := hp() — hm—2(), and, if n =2 < r,

+1 +1
(1.11) on(zE,. .. 2t (1)) = 138t (Erin—ilai 25 (1))
. n o1y Yrgl - + +
lséstsn(en—i(xj 1’ o "Ij-ir(7 1)))

Also here the terms (,1) in (1.10) and (1.11) are optional, depending on whether
0 is meant to be the even or odd orthogonal character. Again, (1.4) (the even
case) comes out of (1.10) by setting r = 0 while (1.5) (the odd case) comes out
of (1.10) by setting r = 0 and multiplying the j-th column in both determinants
vz _ 1/2 ,forj=1,2,.

Identitles (1.6)-(1.11) allow a unified formulation, which we give in the

by z;

following theorem.

THEOREM 1: Let A = (A, As,..., As) be a partition and let x)(x1,22,...,&m)
be any one of the characters sy(z1, 3, ..., ZTm),spy(zEl, 25, ..., 2E1(,1)), or
oa(zEl, zF!, ..., 2£1(,1)). Then there hold

(et (Xouan— (@5 T, s Tjtr))

lsgigtSn(X(n—i)(Ija Tjt1y- -3 Titr))

(1.12) Xa(T1, 22,y ETngr) =

and, ifn—-2<r,

1S<}313Sn(X(1xa+n—-')(wj,l‘j+1, s Titr))

1S<}StSn(X(1n—i)(ﬂ?j,xj+1, ey Tigr))

(113) X)\’(:tnvxn+lv""$r+1) =

Regev notes that the determinants in the denominators of (1.6) and (1.7) factor.
Namely, [8, Theorem 1.(a)]

(1.14) (et (ho-i(zj, ..., 2j40)) = I @-=)
=hI=n 1<i<ign
and (8, Theorem 1’.(a)]
(1.15) (et (en—i(gj,- 1 Tj4r)) = I (@—zicjirs2).
ShIS 1<j<i<n—1

Also the determinants in the denominators of (1.8)-(1.11) factor. Namely we

have
(pEl — T2 T 2
ls(ggtsn(hn—"r(z] M ’x]-l-r)) 1<(},ejt$n(hn—1(x] ’ ’1‘]-{-1‘(’ 1)))
(1.16) 1
= i — Tiyp 1-—-
I I (s 4+ )( TiT;4r

1<i<j<n
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and
+ 1 1
e (e ) = (oo (1)
117 T 1
= [ @i-misee)1- )
1<jSign—1 A

In the next section we first give the corrected proof of (1.7) (which is completely
analogous to the proof of (1.6) in [8]). Subsequently, by following the same idea,
we prove (1.8)—(1.11), and thus (1.12) and (1.13), in a uniform fashion. The
proofs of (1.16} and (1.17) are also contained in the next section. In section 3
we give a generalization of Theorem 1, which for the special case of Schur func-
tions already appeared in Regev’s paper [8, p. 159]. From this generalization
(Theorem 2) we derive more bideterminantal formulas for odd orthogonal char-
acters and bideterminantal formulas for Proctor’s {5, 6] intermediate symplectic

characters that interpolate between symplectic characters and Schur functions.

2. The proofs

For a proof of (1.7) we start by defining three n x n matrices, Hy, By, and M ("),

H, = (6,\,._1‘4.]‘(1'717 ceey zr+1))1Si,an’
By := (ex4n—i(Tjy - s Tjpr) )1<ij<ns
M) = (enoi(Tj, - Tne1, Trgzs - o, Tjsr))1<i,j<n-

We claim that there holds
(2.1) By=H, M,
In order to show this identity, we have to verify
(22) e,\i+n_,-(xj,...,1:j+r)
n
= Ze,\,--i+k($m .- -,Ir+1)6n—k(zj, ey Tp—1,Tr42, .. wxj+r)-
k=1

Now, the generating function for elementary symmetric functions is

(2.3) Y em(yne o 0s)2™ = [+ vi).
m=0 =1
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Therefore, by comparing the coefficients of 2™ on both sides of

j+r r+1 n—1 jtr
H(1 +aiz) = [J(1+2:2) - ( [T+ JT a4+ w))

i=n i= i=r+2

we obtain
(2.4)
m
em(xj, . ,.’Ej+1~) = Zem_p(xn, e ,$T+1) ep(xj, ooy Tn—1,Tr g2y .- - ,:Ifj_H-).
p=0
Since the number of arguments in e,(x;,...,Tn_1,Zr42,...,Zj4r) 8 n — 1, the

summands at the right-hand side of (2.4) vanish for p > n. Hence, we may
replace p by n — k, where k runs from 1 to n, thus obtaining (2.2) when we also
set m = A; + n — 1. This establishes (2.1).

Next, on both sides of (2.1) we take determinants. By the dual Jacobi-Trudi
identity for Schur functions (cf. [4, L.(3.5); 1, (24.11), (A.6)]) we have det H) =
$3(%n,...,2r41). By setting A = 0 in (2.1) we deduce det M(") = det By =
det(en—i(j,...,%;4r)). Hence, (1.7) is established. [ ]

The proofs of (1.8)—(1.11) are analogous, only the choice of the matrices
Hy, By, M) and the Jacobi-Trudi type identity that is used differ. So it will
suffice to give a detailed proof only for the even case of {1.8). For the odd case of
(1.8) and for (1.9)—(1.11) we only state the choices of the matrices Hy, By, M (")
and give the respective references for the Jacobi-Trudi type identities.

In order to prove the even case of {1.8) we choose

H)‘ = (h,\t_i+1(.l‘:1t1, . .,.Z‘i:_}_r) hAi_i.*_j(I_itl, .. .,.’Ef_lh.)
+ h’\l"i—j+2($:1h1’ L) x’rﬂl:—l#r))lﬁi,jgn»
B,\ = (h)\l.+n_i($;~tl, . ":I:;'tir))lfi»jfn7

M(T) = ((—1)n—i€n_i(3}:1tl, ey Z;t_ll, .’C;t_ir+1, ey .’I?f_}_,))lsl‘,jgn‘

The notation for H) means that the first expression gives the entries of the first
column while the second expression gives the entries of the remaining columns,
J > 2. Again we claim that

(2.5) By =Hy-M®",
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Here we have to verify

h,\i+n_i(r;-t1, . .,:L‘;h_:r) = hy_ipa (2F L IfiT) (-1)n?
+1 +1 41 s
cen_1(2] e T T g 1 Thir)
+Z h)\ _1+k(.l‘1 v n+r)+h>\ —f— k+2( il?"'v‘lzf-fl—r))
k=2
k +1 +1 _+
(2.6) (=1 en g (] ,...,mj_l,xjﬁrH,...,xfir)

The generating function for the complete homogeneous symmetric functions is

s
1
(2.7) th(ylv-'-vys ~H(1-—*)
m=0 i=1 Yiz
Therefore, by comparing the coeflicients of z™ on both sides of
i (1 —z2)(1 -z '2) paly (1—z;2)(1 - a7 t2)
-1 n+r
( H 1—2:2)(1— 27 tz2) H (1 —z:2)(1 — x; 1~)>
i=1 t=j+r+1
we get
+
(2.8) hm(af!,. . 2E)= th O vt | (o § L4
+1 oL pEl il
cep(xT, L, AT S PP Toie)
The number of arguments in e, (21!, ... x;tll, I;t_:rH, RV xfi,) is 2n—2. Hence
the summands at the right-hand side of (2.8) vanish for p > 2n — 1. Besides, we
have
+1 +1 41 +1 +1 +1 o+l +
ep(T BT Tnt,) = eanma o (a2,

since the product of all 2n — 2 arguments equals 1 and the set of arguments is
invariant under taking inverses. So, if we reorder the summands at the right-
hand side of (2.8) by singling out the (n — 1)-st summand and pairing the p-th
with the (2n — 2 — p)-th summand, for p=n —2,n —3,...,1,0, after replacing
m by A; + n — i we obtain (2.6). This establishes (2.5). The remaining steps are
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the same as before in the proof of (1.7). This time det H, is identified to be the
symplectic character sp A(:clil, ceey rf}ﬂ) by virtue of the symplectic Jacobi-Trudi

identity (cf. [1, Prop. 24.22)). |

The odd case of (1.8) is established in the same manner. We choose

H)\ = (h/\i_i+1($:1t1,...,$2:ir,1) h,\i_,-_f_j(:vitl,...,xf_,l_r,l)
+ hamiciga(@Eh Tl D)) igij<n,
By = (h/\i+n—‘i(xj‘:17 . wxﬁlr, 1))1<i,j<ns

M(T‘) = ((_1)”_ien_i($li1’ e ,.’I,';t_ll, x;'hir+l’ e 7fr7:1t-1kr))lﬁi,j5ﬂ‘

The Jacobi-Trudi type identity for the odd symplectic character that has to be
used in this instance is [5, p. 317]

Spk(w:ltlvxglv"'axrjz:lal)
= det (hy,_ipi(el, 2T 1) 1 Ay ag(eEl . 2Eh )
1<4,j<n
+h/\i—i—‘]’-i-?(l‘:ltl""’xflvl))' i

In order to prove (1.9) we choose

Hy = (el,\,-—z‘+1($$la . --a%ﬂl(v 1)) : elxi—iﬂ'(wfl, . -:xih(v 1))
teh, _ijpal@rt, o zEL D hcien,
By = (ef\,.+n-i($;t1» . “71";'*:-{}1-(7 D)i<i,j<ns
MO = (enoi(zF, . 2El a2, oE Dicij<n:
That det Hy equals sp,. (z%1,.. ., xﬁl(, 1)) is due to the dual symplectic Jacobi-
Trudi identities (cf. [1, Cor. 24.24] for the even case and [7, Appendix A2] for the

odd case). 1

For the proof of (1.10) we choose

Hy = (h,,\;—i+1(x:1t1’ . ~axrﬁr(, 1)) : h/)\;—i+j(x1il’ . --vwrﬂr(’ 1))
+ hl)\;—i—j+2(x:1t1’ ooy f'?r:f-lyr(’ Di<ij<n,
B = (h',\'.+n_i(xji1, . xji_:r(, 1)))i<i,j<ns
MO = (-1)"eni(at!, .. 25, T g1 T ))1gi <
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The orthogonal Jacobi-Trudi identities (cf. [1, Prop. 24.44, Prop. 24.33])

guarantee that det Hy equals oy (23!, ... ,xE)(,1)). |

Finally, for proving (1.11) we choose

HAZ(CA,-—iH(ﬂUfIv'- ) 7‘+1( 1) - e)\;—i+j(x1:‘l:1’"'71‘3:-:1(’1))
+ex—icgra(@ty T G D)ici g
B, = (€A,+n—i(x§t1»~--vxﬁr( D)h<ij<r
M) = (en_i(a:]?tl,.. xfll,xﬂy_, ..,xﬁ,))lgi‘jsp

Here we use the dual orthogonal Jacobi-Trudi identities {(cf. {1, Cor. 24.45,
Cor. 24.35]). |

Now we turn to the determinant factorizations (1.16) and (1.17). What we do
is to change Regev’s proofs of (1.14) and (1.15) into proofs of (1.16) and (1.17).
First we have to find analogues for Lemmas 5 and 5’ (bottom line of p.158) in

Regev’s paper. These analogues can be given in a unified form. They read

(2.9) hy(zE),. . 2F( 1)) - h(2F!, ... 2l (1)

1 -
= (3:1 - xv+1)(1 - )hs l(x:ltlv . "7"3:41-1( 1))
T1Tv41

where h,, is any of hny, or A/, and

(2.10) € (a:lil,.. , 1fl(,l)) € (a:;tl,...,xlﬂl( 1))
1 -
= (xl - .’L‘U+1)(1 - T1Tyq1 )e 1(m2i17' . -axfl(vl)))

where €, is any of e,, or e],,. These two identities are easily proved by means of
generating functions. For a proof of {1.16), let det (n,7) denote the determinant

7 +
et (hoi(af, 2B (1))

The last row of this determinant consists of all 1’s. Subtract the j-th column
from the (7 — 1)-st column, j = 2,...,n, and then expand in the last row. By
using the relation (2.9) we obtain

- 1
det (n,r) =det(n—1,7r+1) i — T14jtr (1—————).
-l;[ ! TjTj+14r
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By induction on n we are done. The proof of (1.17) is similar. |

At the end of this section we show that (1.3) with A,;; = 0 and the odd case
of (1.8) with r = 0 are equivalent. In order to see this, first observe that because
of 41 = 1 in both determinants in (1.3) the last column consists of all 2’s.
Hence, if we subtract the last row from all the other rows in both determinants
n (1.3), the last column will consist of only zeros with the exception of a 2 in
the last row. Expansion in the last column gives

spa(eit ey, . 2 1)
Aitn—i48/2 | —(Ai+n—i+3/2) 1/2 ~-1/2
IS(%,ejtSn ; +z; -z "=z )
= n—it3j2 | —(n—i+3/2) 1/2 ~1/2
13(11?511 L t; -y -z )
Now in both determinants we divide the j-th column by x +x 32 g2 _got/?

j J
and obtain (1.8) with v = 0 by using the identity

m+3/2 + x“(m+3/2) — /2 _ 172
13/2 4 2=3/2 _ g1/2 _ x—1/2

Rm(z, 271, 1) =

That this identity actually holds is easily verified by using generating functions.
|

3. A generalization

Here we are going to state a generalization of Theorem 1. Let A = (Ay,..., A, ) be
a partition and let z denote the sequence zy, 29, .. ., 2z, of variables. We formally
define
1 1 1,41 1
sp,\(acli x2 12t ,zl,...,zm)—spA(x:f ,:r:2i vooyzil g)
+1 1 . +1 1
= det (ha—iga(zr’,..zihie) 1 by (e 5E 2)
1<, j<n
(3.1a)
+ h)\ —1.—-_7+2( :tla ey ilaz))

_ 1 +1 +1 : +1 +1

_1<c21%t<n(e>‘;_i+l(:c1 ey X B) L cz/\,_lJr](av1 ey X, Z)
(3.1b)

+ ei\{.—i-1'+2(x:1t1’ SRR 7:&:1’2))
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and
OA(xfl,xfl, .,xfl, 2y erZm) = oA(x'iU, xfztl, ey xfl, z)
+1 +1 : +1 1
:1<(113't<n{ (el xEh2) o RS (T et g)
(3.2a)
+1
+ h’/\i—i—j+2(11 . .,xfl,z))
= 1<(36jt<n(€)\2_i+1(1,‘:1t1, e 3x1j1:132) 6)\;_i+j($:1tl, e ,xfl,z)
(3.2b)
+e>‘;_i_j+2(x1i1,...,xfl,z)).
The notation hk(:clil, .. .,I;H,z) means hk(l‘l,Il_l, ey Ty T 21y ey Zm), and

similarly for ey, h}, and e},. That the determinants in (3.1) agree and that
the determinants in (3.2) agree is well-known (see [1, Prop. A.44, Cor. A.46]
for a proof). The expressions spA(a:‘ltl,xfl,...,x,ﬁl,z) and oA(zlﬂ,xQﬂ,...,
xx! z) are sometimes called formal characters.

Now we are able to formulate the announced generalization of Theorem 1.

THEOREM 2: Let A = (A1, Az,...,A,) be a partition and let x)(zy,Z2,...,Zm)
+1 41

be any one of the characters sy(xi,Z2,...,&m,2),8py\ (27", 23 oo xilz), or
ox(zE?, 2Et, ... atl 2). Then there hold
ISC}StSn(X(,\i+n—i)($ja-'I»'j+1,---vxj+r))
(33) XX(II’:C%'”yxn-}—r) = y
(Jet Ocn-y (@5, T340, -, Tr)
<i,j<n

and, ifn-2<r,

1<(3(3,t<n(X(1h+n—i)($j»$j+1, s Tir))
(3.4) XM (T T 1y e oy Tpgp1) = —2— .
e det (x(n-i)(T5 Tj41s-- s Tjtr))
1<i,j<n

The proof of Theorem 2 is identical with the proof of Theorem 1 and is therefore

omitted. Clearly, Theorem 1 is just a special case of Theorem 2. n
The sp, (z3!, 23, ..., 2%, 2) which were formally defined in (3.1) are actual

characters. They are characters of “trace-free” representations of intermediate
symplectic groups [5] that interpolate between the symplectic groups and the
general linear groups. Actually, these trace-free characters are indexed by par-

titions with up to n + m parts. So our Theorem 2 only gives bideterminantal
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expressions for these characters for partitions A with at most n parts. It can
be shown in a similar manner as at the end of section 2 that the x, = sp,,
r = 0, z = —1 special case of (3.3) is equivalent to the A,4+; = 0 case of the

following bideterminantal formula for the odd symplectic character evaluated at

+1 +1
bR, -

(3.5) sp,\(xihl,xfl,...,zfl,—l)

x%,‘+n—’i+3/2 _ x.—(ki+n—’i+3/2))

_ 1ijsntr !

- e xv.l—i+3/2 _ x.—(n—i+3/2))
1<i,j<n+1 7 J

Tpp1=—1

This identity does not appear in [5] but can be derived completely analogously
as (1.3) was derived in [5, sec. 8.

A representation-theoretic meaning for the ox(zt!, 25!, ...,2E!, 2), formally
defined in (3.2), is not so immediate. Perhaps, if intermediate orthogonal rep-
resentations would be defined in analogy with the definition of intermediate
symplectic representations in [5], then the expressions in (3.2) would turn out

to be characters for these representations. We confine ourselves with consid-

ering (3.2) with z = —1. This has a representation-theoretic meaning, since
0y (a:lil, x2i1, ...,z¥1 ~1) is the usual odd orthogonal character evaluated at the

“negative” part of the orthogonal group. In particular, the xp = o), r = 0,
z = —1 special case of (3.3) is equivalent to the formula (cf. {7, proof of A2.1(d)])

det (./L')-‘i+n_i+1/2 + .’174_()‘1'-'-"_‘“'1/2))

1<i,j<n" 7 J
(3.6) oa(zfl,zfl, ...zt -1) = == . ‘
—i+1/2 —(n—i+1/2)
det (z7° +z;
1saj5n( J J )
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